\qquad

Laying eggs...

Could it be normal?

Use the data summary below, Loggerhead (Caretta caretta) sea turtle nesting dates along Jupiter-Carlin Beach from 2010-2015, to complete the following tasks.

Nesting Date Window	Interval for the Day of the Year	Mid-Interval Day of the Year	Number of Observed Nests (Frequency)	Cumulative Frequency
April 1-15	91-105	$\frac{91+105}{2}=98$	1	1
April 16-30	106-120	$\frac{107+121}{2}=113$	41	$41+1=42$
May 1-15	121-135	128	409	451
May 16-31	136-151	143.5	1243	1694
June 1-15	152-166	159	1438	3132
June 16-30	$167-181$	174	1446	4578
July 1-15	182-196	189	1499	6077
July 16-31	197-212	204.5	1113	7190
August 1-15	213-227	220	401	7591
August 15-31	228-243	235.5	94	7685
September 1-15	244-258	251	8	7693
September 15-30	259-273	266	2	7695

1. Complete the table by filling in the mid-interval value and the cumulative frequency for each range of dates.
2. Create a histogram to represent the data set. Sketch the histogram below.

3. Create a cumulative frequency diagram (ogive) to represent the data set. Sketch the diagram below.

Loggerhead (Caretta caretta) Sea Turtle Nests
 Along Jupiter-Carlin Beach 2010-215

4. Analyze the histogram to see what can be learned about the center and variation of the number of nests.
a. Estimate the mean using mid-interval values.
$\mu=174$
b. Estimate the standard deviation.
$\sigma=25.9$
c. What is the shape of the distribution?

The distribution is bell shaped.
5. Determine whether the data can be considered normally distributed. Tell why or why not.

Yes, the data can be considered a normal distribution. The histogram is bell-shaped and symmetric about the mean.
\qquad

Using the Normal Distribution and its Properties

The nesting days for Loggerhead sea turtles along Jupiter-Carlin beach are normally distributed with a mean (μ) of the $174^{\text {th }}$ day of the year and a standard deviation (σ) of 25.9 days.

1. Calculate the probability the following will occur:
a. $\quad P(x \leq 183)=64 \%$
b. $P(141 \geq x \geq 183)=53 \%$
c. $P(x=205)=0.8 \%$
2. Find the day of the year when the probability of a Loggerhead nesting is 45%.
$170.7^{\text {th }}$ day
The length of Loggerhead sea turtle shells are normally distributed and 70\% of the sea turtles along the coast have a shell length between 85 cm and 103 cm .
3. Sketch a diagram of the normal curve with the above information clearly labelled.

4. Using z-scores, find the mean and standard deviation for the length of the sea turtle shells along this coastline.

$$
\begin{gathered}
z=\operatorname{InverseNorm}(0.2,0,1)=-0.84 \\
z=\operatorname{InverseNorm}(0.9,0,1)=1.28
\end{gathered}
$$

Set up a system of equations to solve for μ and $\sigma: 1.28=\frac{103-\mu}{\sigma}$ and $-0.84=\frac{85-\mu}{\sigma}$

$$
\mu=92.1 \mathrm{~cm} \text { and } \sigma=8.5 \mathrm{~cm}
$$

